Application of a chemical reactivity database to predict toxicity for reactive mechanisms
نویسندگان
چکیده
Covalent binding of xenobiotic electrophiles to nucleophilic endogenous biomolecules, e.g. peptides or DNA, is a common molecular initiating event, leading to potentially irreversible toxic effects such as enhanced acute toxicity, skin sensitisation, or mutagenicity. This knowledge provides the basis for the in silico prediction of these toxicities. The potential for a chemical to be reactive can be determined experimentally by a number of chemical tests and therefore can be captured computationally to form (Q)SARs. Providing a source of in chemico data for the reactivity of electrophiles with reference nucleophiles could assist in the non-animal based risk assessment of chemicals for regulatory purposes and in the application of integrated testing strategies (ITS). For this reason, we have compiled a database from a full range of chemical reactivity assays containing various reactivity data of numerous electrophiles forming peptide and DNA adducts. This includes reactivity data, kinetic rate constants, and qualitative information regarding the adducts formed. The data collection facilitates the in silico profiling of toxicologically relevant compounds by grouping and category approaches, and allows for the combination of the following information: the identification of electrophilic compounds; their mechanistic applicability domain and compound class; physical-chemical properties; reactivity data; and toxicological data. These experimental reactivity data were linked to the computational prediction of reactive mechanisms for different modes of toxic action (e.g. acute aquatic toxicity), at which the results indicated that physically meaningful parameters are suitable to explain the varying behaviour of electrophiles. This could be applied for screening purposes based on structural information and the reactivity data could be used to elucidate mechanisms of toxic effects. The funding of the EU FP6 InSilicoTox Marie Curie Project (MTKD-CT-2006-42328) is gratefully acknowledged.
منابع مشابه
Theoretical Studies of the Vibrational Spectra and Molecular Structures of Dosulepin and Doxepin
Dosulepin and doxepin are tricyclic antidepressants. The molecular geometries, harmonic vibrational frequencies, quantum chemical parameters and thermodynamic properties of dosulepin and doxepin were calculated by Generalized Gradient Approximation methods developed by Perdew and Wang (GGA-PW91) and Becke-Lee-Yang-Parr (GGA-BLYP) in the gas phase and solution media. The local reactivity of thes...
متن کاملApplying mechanisms of chemical toxicity to predict drug safety.
Toxicology can no longer be used only as a science that reacts to problems but must be more proactive in predicting potential human safety issues with new drug candidates. Success in this area must be based on an understanding of the mechanisms of toxicity. This review summarizes and extends some of the concepts of an American Chemical Society ProSpectives meeting on the title subject held in J...
متن کاملAccelerated Cytotoxicity Mechanism Screening
By discovering how chemical compounds/xenobiotics cytotoxicity is affected when their metabolic pathways are inhibited or activated, the metabolic pathways that activate versus detoxify chemical compound can be identified. Reactive metabolites contributing to cytotoxicity can also be identified. In this lecture, the pretreatment of inhibitors and activators of xenobiotic metabolizing enzymes as...
متن کاملA Reactivity Based Emission Inventory for the South Pars and Its Implication for Ozone Pollution Control
The South Pars zone in Iran encompasses the largest gas refineries and petrochemical complexes in the world. In the South Pars zone, elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from industrial facilities lead to substantial ozone production downwind. To understand the role of these emissions on the ozone formation and, to formulate appropriate control st...
متن کاملQuantifying intrinsic chemical reactivity of molecular structural features for protein binding and reactive toxicity, using the MOSES chemoinformatics system
Covalent binding of xenobiotic compounds to endogenous biomolecular sites, e.g. protein residues, leads to potentially irreversible toxic effects such as enhanced acute toxicity or skin sensitization [1]. This mechanistic knowledge provides the basis for the in silico prediction of these toxicities, as required by the EU REACH legislation and the EU Cosmetics Directive. A general toxicity predi...
متن کامل